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We consider the problem of the interaction of unsteady disturbances (wind gusts and low- 
intensity shocks) with an airfoil in a transonic stream of ideal gas. We investigate the dy- 
namics of compression shocks that enclose local supersonic zones and determine the influence 
of the movement of shocks on the unsteady aerodynamic characteristics. We analyze the in- 
fluence of the nonlinearity of the problem associated with a transonic regime of motion. 
We give the results of numerical calculations of the problem for specific cases of the action 
of aperiodic disturbances: horizontal wind gusts and shocks that overtake the airfoil. 

Much interest has recently been devoted to the investigation of unsteady transonic flows 
[i]. This is important, for example, for the aerodynamics of helicopters [2-4], acoustics 
problems, and aeroelasticity problems [5-7], since small disturbances of stream parameters 
can significantly affect the positions and intensities of shocks, which, in turn, strongly 
affect the integrated aerodynamic characteristics. Most of the earlier research on the in- 
teraction of unsteady disturbances with bodies has involved disturbances of a periodic na- 
ture [2, 3, 5, 8], which makes it possible, generally speaking, to simplify the problem, 
using the so-called low-frequency approximation. In the analysis of certain cases (vibration 
of a flap, for example), one can then represent the unsteady solution as a combination of a 
steady nonlinear solution and an unsteady linear one [2]. 

The action of aperiodic disturbances on a body in a transonic stream presents a more 
complicated problem. We note [4], in which the interaction of aperiodic disturbances caused 
by the motion of vortices with an airfoil was studied within the framework of a nonlinear 
transonic theory. 

In the present paper we analyze the action of aperiodic disturbances on an airfoil moving 
in a transonic stream. As the disturbances we consider wind gusts and moving weak shocks. 

i. Statement of the Problem. Let a steady transonic stream of ideal gas flow with 
velocity U~ over a thin airfoil set at a small angle of attack. At the initial time an un- 
steady disturbance develops in the stream in the form of a wind gust, which instantaneously 
encompasses the airfoil, or a weak shock, whose front is initially located a certain distance 
from the body. It is required to investigate the unsteady process of flow over the airfoil 
and the change in the airfoil's integrated aerodynamic characteristics in the transitional 
regime. 

Since the Mach number of the oncoming stream is M~ ~ i, while the thicknesses of the 
airfoils under consideration, the gust velocities, and the shock intensity (the pressure 
drop at the shock front) are small compared to the characteristic values of the analogous 
quantities in the problem, we can use the transonic theory of small disturbances. In the 
context of that theory, the problem is described by a nonlinear unsteady equation for the 
potential ~ of the disturbed velocity [3, 4]: 

B ~  + 2B~xt = o {[C~ + C 2 ( ~  + ua)] (~x + u.~ --  C~u~} + ~ .  ( 1 .1  ) 

Here B = M~; C l = I - M~; C 2 = -(~ + I)M~/2; ~ is the adiabatic index; u G is the horizontal 
velocity component of the external disturbance. 

We place the origin O of the Cartesian coordinate system at the center of the chord of 
the airfoil, and we direct the Ox axis along the velocity vector of the undisturbed oncoming 
stream and the Oy axis upward, perpendicular to the Ox axis. We assume that all quantities 
in Eq. (i.i) and below are normalized to their characteristic values: 
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x0= yo=l, uo= U~,to= Xo/Uo, ~0=u~0 

(~ is the length of the chord of the airfoil). 

We represent the velocity field in the form of three components: the velocity u~ of 
the uniform oncoming stream, the velocity vo of the external disturbance, and the gradient 
V~.of the unknown disturbance of the velocity potential, i.e., 

v = u ~  + v ~ + V ~ .  ( 1 . 2 )  

Using Eq. (1.2) does not mean that the problem has been linearized, since Eq. (i.i) is 
nonlinear and it cannot be solved in the form of the corresponding superposition. 

Let the contour of the airfoil be described by the equation Yb = f(x, t); we then write 
the boundary condition of nonpenetration at the airfoil as 

a~v=o(aa ) a7 ~ + ~  Yb--VG, I X I < 0 ,  5 (1.3) 

(v g i s  t h e  v e r t i c a l  v e l o c i t y  component  o f  t h e  e x t e r n a l  d i s t u r b a n c e ) .  

To o b t a i n  good a g r e e m e n t  be tween s o l u t i o n s  found  w i t h i n  t h e  f ramework of  t h e  t r a n s o n i c  
t h e o r y  o f  s m a l l  d i s t u r b a n c e s  and u s i n g  t h e  E u l e r  e q u a t i o n s ,  we use  a v a r i a b l e  v a l u e  o f  t h e  
exponen t  m in  t h e  e x p r e s s i o n  f o r  C 2. I t  i s  chosen  f o r  t h e  s p e c i f i c  a p p l i c a t i o n  and depends  
on t h e  s o l u t i o n  i t s e l f  in  a c e r t a i n  s e n s e  [ 2 ] .  I n  t h e  p r e s e n t  pape r  we use  t h e  p r o c e d u r e  
s u g g e s t e d  in  [ 9 ] :  t h e  e x p o n e n t  m i s  t a k e n  t o  be 1 .75 ,  and t h e  i n c l i n a t i o n  o f  t h e  s u r f a c e  o f  
t h e  a i r f o i l  in  t h e  b o u n d a r y  c o n d i t i o n  ( 1 . 3 )  i s  d i v i d e d  by M~/~. Th i s  i n c r e a s e s  t h e  c a l c u l a -  
t i o n  a c c u r a c y d u e  t o  c o m p e n s a t i o n  f o r  e r r o r s  i n t r o d u c e d  in  t h e  a p p r o x i m a t i o n  o f  t h e  b o u n d a r y  
c o n d i t i o n s  a t  t h e  l i n e  y = 0. The p r e s s u r e  c o e f f i c i e n t  cp in  t h e  u n s t e a d y  s t r e a m  i s  c a l c u -  
l a t e d  from the formula 

cp = - - 2 ( ~ +  u~ + ~ ) .  ( 1 . 4 )  

The Chaplygin-Zhukovskii condition at the sharp trailing edge of the airfoil, when con- 
tinuity of the vertical velocity and pressure in the wake - located at the Ox axis (y = 0, 
x > 0.5) in the approximation under consideration -is satisfied, leads to the relationship 

+0, t ) )  (1.5) 

S i n c e  in  a n u m e r i c a l  r e a l i z a t i o n  we s o l v e  t h e  p rob lem in  a l a r g e  bu t  f i n i t e  domain,  we 
must e l i m i n a t e  t h e  p o s s i b l e  i n f l u e n c e  o f  t h e  b o u n d a r i e s  on t h e  f low f i e l d  due t o  r e f l e c t i o n  
back i n t o  t h e  s t r e a m  of  d i s t u r b a n c e s  t h a t  r e a c h  them. We a c h i e v e  t h i s  by a p p l y i n g  n o n r e f l e c -  
t i r e  bounda ry  c o n d i t i o n s ,  d e v e l o p e d  f o r  Eq. ( 1 . 1 )  in  [ 1 0 ] .  D i s t u r b a n c e s  f rom t h e  body t h a t  
r e a c h  t h e  b o u n d a r i e s  o f  t h e  c a l c u l a t i o n  domain t h e n  p a s s  f r e e l y  t h r o u g h  them. 

E q u a t i o n s  ( 1 . 1 ) - ( 1 . 5 ) ,  t o g e t h e r  w i t h  t h e  a f o r e m e n t i o n e d  c o n d i t i o n s  a t  t h e  b o u n d a r i e s  
o f  t h e  c a l c u l a t i o n  domain,  c o m p l e t e l y  d e s c r i b e  t h e  p rob lem of  u n s t e a d y  i n t e r a c t i o n  o f  an 
a i r f o i l  w i t h  ( i n s t a n t a n e o u s l y  e n c o m p a s s i n g )  wind g u s t s  in  a t r a n s o n i c  s t r e a m .  

I n  mode l ing  t h e  a c t i o n  o f  weak shocks  on an a i r f o i l ,  t h e  above  method i s  i n a p p l i c a b l e  
b e c a u s e  t h e  v e l o c i t y  f i e l d  o f  t h e  e x t e r n a l  d i s t u r b a n c e s  i s  n o t  known in  a d v a n c e ,  s i n c e  b o t h  
t h e  s h o c k ' s  i n t e n s i t y  and t h e  p o s i t i o n  o f  i t s  f r o n t  change  in t h e  p r o c e s s  o f  t h e  i n t e r a c t i o n .  
We t h e r e f o r e  u s e  a n o t h e r  a p p r o a c h .  In  Eqs.  ( 1 . 1 ) - ( 1 . 5 )  we t a k e  u G = v G = O, and t h e  shock  
i s  modeled by s p e c i f y i n g  a c e r t a i n  p o t e n t i a l  d i s t r i b u t i o n  a t  a f a i r l y  l a r g e  d i s t a n c e  from 
t h e  a i r f o i l ,  where t h e  s t r e a m  i s  h a r d l y  d i s t u r b e d .  The weak shock ,  g i v e n  by t h e  p o t e n t i a l  
d i s t r i b u t i o n  a t  t h e  t ime  t = 0,  s t a r t s  t o  p r o p a g a t e  a t  t > 0 in  a c c o r d a n c e  w i t h  g a s - d y n a m i c  
laws in the field of the disturbed flow profile. 

2. Method of Solution. We solve the problem numerically using an implicit finite- 
difference method of variable directions [8], using the Engquist-Osher algorithm [ii] for 
spatial differentiation, depending on the type of equation. This algorithm is monotonic and 
automatically eliminates nonphysical solutions in the form of rarefaction shocks. In con- 
trast to explicit methods, there are no limits on the time step associated with the analysis 
of stability, which enables us to consider the entire transition process up to the new steady 
state with no significant increase in calculation time. In the investigation of the unsteady 
solution, however, At must not exceed the time in which the shocks in the flow field travel a 
distance greater than one cell of the calculation grid. Test calculations show that in the 
analysis of transitional processes in the transonic range, calculations must be carried out 
with sufficiently small &t (0.01-0.04) in the initial calculation stage for a correct descrip- 
tion of the dynamics of shocks that enclose the supersonic domain, especially when they lie 
near the trailing edge. 
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The calculation scheme is conservative. Compression shocks are not specially singled 
out, but are obtained in the process of calculation in the form of a strong bunching of iso- 
bars in the flow field. The solution process is not iterative, but ~n+1 at the (n + l)-th 
time layer is found directly from ~" at the n-th layer. 

Numerical calculations of the problem of the action of unsteady wind gusts were carried 
out on a grid of 91 nodes in the x direction and 60 nodes in the y direction. To better 
reveal the dynamics of shocks in the stream in the problem of the action on an airfoil of a 
shock overtaking it from behind, the number of nodes was increased to 167 in x and 120 in y. 
The grid is bunched in the regions of the leading and trailing edges and spread out toward 
the outer boundaries of the calculation domain, which lie at distances of 80 chord lengths 
from the body in the x direction and 120 chord lengths in the y direction. At the airfoil, 
which lies on thex axis (Ix I < 0.5) there are 55 nodes. 

The solution of the problem of steady transonic flow over the airfoil, needed as an 
initial condition, is also obtained using the present algorithm by the establishment method. 
The steady-state solutions thus found agree well with solutions of the Euler equations and 
the complete potential found by other methods. 

3. Action of Wind Gusts. The problem of the interaction of an airfoil with a horizontal 
wind gust in the opposite direction from that of the airfoil is of great interest from the 
practical standpoint, and for revealing features that specifically characterize the transonic 
region. It is important to investigate the dynamics of shocks in the transitional process, 
since they cause considerable changes in the integrated aerodynamic characteristics. 

In Fig. 1 we give values of the lift coefficient cy(t) as a function of time for cases 
in which horizontal gusts, in the direction opposite to that of the airfoil, with velocities 
u G = 0.037, 0.074, 0.147, and 0.221 (curves 1-4), act on a biconvex airfoil formed by arcs 
of a circle, with a thickness 6 = 0.04, at an angle of attack ~ = 2 ~ , and in a stream with 
M= = 0.8. It should be noted that these u G correspond to actual wind gusts of i0, 20, 40, and 
60 m/sec observed in nature. 

The general scheme of the interaction for this example is as follows. The horizontal 
gust causes an increase in the velocity of the oncoming stream. The pressure curve at the 
surface of the airfoil "fills out." The stream velocity is considerably higher at the upper 
surface than at the lower surface, and at some time after the gust starts to act, a large 
supersonic zone forms at the upper surface. The shock enclosing the supersonic zone gradually 
shifts toward the trailing edge, and its intensity increases simultaneously. If a supersonic 
zone is also formed at the lower surface, then the shock enclosing it also starts to move 
toward the trailing edge, but slower than the shock at the upper surface, since the stream 
velocity is lower at the lower surface. If there are no supersonic zones, then the areas 
under the pressure curves increase, and faster at the upper surface. As a result, an in- 
crease in lift is observed in the initial stage of the interaction. 

If the gust is sufficiently strong, then the shock at the upper surface already reaches 
the trailing edge in the transitional process, and it does not move farther. At the same 
time, the downstream movement of the shock at the lower surface continues. This results in a 
decrease in the difference between the areas of the pressure curves and a consequent decrease 
in lift. The characteristic swing in the lift in the transitional period (solid curves 3 and 
4 in Fig. i) is formed in this way. 

Depending on the conditions of the original streamline flow and on the magnitude of the 
gust, the new steady-state value of cy may be either larger or smaller than the initial 
value. As seen from Fig. i, a large gust can result in a lower new steady-state value of 
Cy. This is because the steady-state lift coefficient as a function of Mach number in the 
near-sonic range has a maximum; the initial and final points of the transitional process lie 
on different sides of the maximum on that curve. 

The nonmonotonic behavior of the aerodynamic characteristics in the transitional period 
reflects a fundamental difference between the nonlinear and linear problems; the transition 
to the new regime is monotonic in the linear problem. The dashed curves in Fig. 1 give the 
numerical solutions of this problem in the linear formulation. It is obtained by setting 
C 2 = 0 in Eq. (i.i). The nonlinearity is manifested, as seen from Fig. i, in a slowing of 
the transition to the new steady streamline flow, in addition to the property indicaied above. 
Moreover, the new linear steady-state value differs considerably from that obtained in the 
nonlinear theory, and that difference increases for larger gusts. 
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The latter conclusions are consistent with the results of [4, 8], in which the problems 
of a sudden vertical downdraft and of entry into a vertical gus t were considered. We also 
note that the swing in the Cy curve observed in the interaction of horizontal gusts with an 
airfoil can be several times larger than the steady-state value of the lift coefficient. 

The behavior of the torque coefficient relative to 1/4 of the chord, shown in Fig. 2, 
also displays nonmonotonic properties associated with features of transonic streamline flow 
(the notation here is analogous to that in Fig. i). The movements of shocks over the airfoil 
have a stronger influence on the variation of c m than cy, since the moment arm of the applied 
torque varies along with the area of the pressure curves on the surface of the airfoil. 

The horizontal dot-dashed lines in Figs. 1 and 2 represent the steady-state values of 

Cy and cm for the given airfoil, obtained experimentally in [12], that correspond to the 

flows established after the action of the gusts. Good agreement between the experimental 
and numerical results is observed. 

Conclusions analogous to those described above are also obtained in the analysis of 
problems of the unsteady interaction of airfoils with vertical wind gusts in a transonic 
stream. Moreover, a comparison of the nonlinear numerical solutions with linear numerical 
solutions obtained by the same method and with the well-known analytical linear solutions 
of [13, 14] enables us to conclude that the influence of nonlinear terms is stronger in the 
subsonic range than at M~ > I~ 

4. Unsteady Interaction 0f a Weak Shock with an Airfoil. To determine the efficacy 
of our approach to the study of the action of weak shocks on an airfoil, we investigate the 
interaction with a shock that overtakes the airfoil. This is one of the typical cases that 
brings out the features of unsteady interaction in a transonic stream. 

In Fig. 3 we give, in the form of isobars, the evolution of the flow pattern in the 
interaction of a shock (Ap = 0.21) with an airfoil formed by arcs of parabolas, with a thick- 
ness 6 = 0.i, at an angle of attack ~ = 1 ~ and in a transonic stream with M~ = 0.875. 

At t = 0.8 (Fig. 3a), the wave has not yet reached the trailing edge of the airfoil. 
The flow ahead of it is undisturbed. The integrated aerodynamic characteristics have not 
changed and correspond to the initial steady-state values. 

In Fig. 3b we show the time t = 4.2, when the shock has interacted with the shocks that 
enclose the supersonic zones and is moving over the airfoil. Since the stream velocity ahead 
of the shock is lower at the lower surface of the airfoil than at the upper surface, it 
travels faster there. The flow pattern does not change ahead of the shock; the stream flows 
with a new velocity over the part of the airfoil behind the shock. 

The asymmetry in the passage of the shock over the upper and lower surfaces of the air- 
foil is even more clearly expressed in Fig. 3c (t = 7.8). At t = 10.2 (Fig. 3d) the wave at 
the lower surface passes the leading edge, curving and weakening near it, and departs up- 
stream, while at the upper surface it is still on the body. The stream flows over most of the 
airfoil with the velocity corresponding to that behind the shock. The pressure curve at the 
lower surface of the airfoil gradually begins to "fill out." It should be noted that where 
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the stream is weakly disturbed (two or three chord lengths up and down from the airfoil), 
the velocities of the shock fronts at the upper and lower surfaces are the same. In Fig. 3e 
(t = 12.5) we show the time when the shock at the upper surface has also passed the leading 
edge. The stream with the new velocity flows over the entire airfoil. The front of the shock 
departing upstream is curved. The pressure curves continue to "fill out." 

Finally, in Fig. 3f (t = 60.0) we show the established flow corresponding to the stream 
with a new M~, lower than before. The case under consideration is characterized by the fact 
that subcritical streamline flow, i.e., with no supersonic zones at the body, is established 
as a result of the interaction. At the same time, when the intensity of the overtaking weak 
shock is lower than in the above example (we carried out calculations for shocks with pres- 
sure drops Ap = 0.05, 0.i, and 0.16 at the front), the supersonic zones do not completely 
disappear from the flow field. The time required for the complete establishment of the new 
regime in unsteady interaction in a transonic stream is very long and, as seen from Fig. 3, 
equals the time required for the airfoil to travel about i00 chord lengths. 

In Fig. 4 we give the variation of the pressure coefficient over the chord of the air- 
foil at its lower and upper surfaces at the same times as in Fig. 3 (c~ is the critical value 
of the pressure coefficient). It is clearly seen that as the shock passes over the airfoil, 
the pressure hump is "eaten away," and this occurs faster at the lower surface (Fig. 4a-d). 
This results in an increase in the area between the pressure curves at the lower and upper 
surfaces, which increases the lift. As seen from Fig. 4d-f, the area between the pressure 
curves starts to decrease after the shock leaves the lower surface of the airfoil. The in- 
crease in lift becomes a decrease as the new steady-state value is reached. A swing thus 
occurs in the lift during the interaction. 

The variation of the lift coefficient cy(t) during unsteady interactions of an airfoil 
with shocks of different intensities is given in Fig. 5 (curves 1-4 correspond to Ap = 0.05, 
0.I, 0.16, and 0.21). The new steady-state value of cy obtained as a result of the interac- 
tion is determined entirely by the initial conditions of the problem and can be either larger 
or smaller than the original lift. 

All of the functions are represented so that the shocks reach the trailing edge at the 
same time. On the curve for Ap = 0.21 we plot the points corresponding to the times selected 
in Figs. 3 and 4. It should be noted that the swings of the curves can exceed severalfold 
the steady-state values of Cy, and since they are active in the flow for a fairly long time, 
their influence can be significant. The behavior of the torque Cm(t) in these cases is 
also characterized by large swings and qualitatively duplicates the behavior of Cy(t) in 
Fig. 5. 

The observed nonmonotonic changes in the integrated aerodynamic characteristics of an 
airfoil with monotonic variation of the intensity of a shock that overtakes the airfoil, as 
in the case of the action of horizontal wind gusts, are characteristic of the transonic veloc- 
ity range, indicating the necessity of investigating these problems only within the framework 
of the nonlinear theory. 
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CALCULATION OF THE MOVEMENT OF A TWISTED FLOW OF A GAS SUSPENSION 

ABOUT THE END OF A SEMI-INFINITE CYLINDER 

I. Kh. Enikeev UDC 532.529 

This article examines the transverse movement of a twisted flow of a gas suspension 
about the end of a semi-infinite cylinder. The flow of the suspension is studied near the 
contact surface. The study is conducted within the framework of a three-velocity, three- 
temperature scheme describing the motion of interpenetrating continua. Questions relating 
to the formulation of the boundary conditions are also discussed. We determine the range of 
variation of the governing parameters within which reverse-circulating flow of the gas and 
particles takes place. 

In most of the theoretical studies devoted either to the external flow of a gas sus- 
pension about a body or to the investigation of internal flows of disperse media, it is 
assumed particles which come into contact with a solid surface disappear from the flow [1-5]. 
Such a formulation of the problem is most appropriate for the case when the disperse phase 
consists of liquid drops or particles which form a thin film along the surface of the body 
after they come into contact with it. 

If the disperse phase forms solid particles, the formulation of the boundary conditions 
becomes more complicated: it is necessary to introduce additional phases - a phase of par- 
ticles reflected from the solid surface [6, 7] and a phase of particles moving randomly near 
the body in the flowing gas suspension [8]. 

I. Formulation of the Problem. We will examine the movement of a twisted flow of a 
gas suspension around a semi-infinite cylindrical end located within a contact surface which 
is coaxial with it (Fig. I). 

In accordance with [7], we introduce a fraction (phase) of incident particles (particles 
flying to the surface of the body in the flow) and a fraction of reflected particles (par- 
ticles flying away from the surface, in the direction opposite the incident particles). As 
has already been noted, in the case of flow past blunt bodies, allowance for collisions be- 
tween particles of different fractions makes it necessary to introduce an additional particle 
phase which moves randomly near the surface of the body in the gas suspension. Here, it is 
necessary to consider the velocity, pressure, and energy associated with the random motion 
resulting from collisions of particles of different fractions. Now the formulation of the 
problem is complicated to the extent that its cannot even be modeled numerically on a com- 
puter. Investigators have therefore found the range of determining parameters within which 
effects connected with randomization of the particles can be ignored. Thus, the estimates 
reported in [9] showed that randomization of the particles can be ignored when the mass con- 
tent of particles in the incoming flow is on the order of 0.5-1. Within the framework of the 
proposed model, the equations describing the given problem have the form [7] 

O P i  . 
09~0~ -r" div plvl = O. -5F + d iv  piv~ = J~j (i =/= ]; i, ] = 2, 3), 

ot 
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